Perangkat I/O

INPUT

Perangkat input adalah perangkat yang dapat memasukan data dan perintah kepada komputer untuk kebutuhan lebih lanjut. Input juga dibagi dua yaitu input sinyal , dan maintenance . Input sinyal adalah data atau program yang dimasukan kedalam sistem komputer, sedangkan maintenance adalah program yang digunakan untuk mengolah data input sinyal.

Contoh-contoh perangkat input adalah :

1. KEYBOARD

Keyboard ditemukan oleh Christopher Latham pada tahun 1868 dan banyak dipasarkan pada tahun 1877 oleh Perusahaan Remington. Keyboard adalah papan ketik yang berfungsi sebagai media interaksi antara user dengan mesin yang terdiri dari tombol- tombol untuk mengetikkan kalimat dan simbol-simbol khusus lainnya pada komputer. Dalam bahasa Indonesia, keyboard artinya papan tombol jari atau papan tuts.

Keyboard dibedakan menjadi 4, yaitu:

a. Keyboard Serial

Menggunakan Din 5 male dan biasanya digunakan pada computer tipe At

b. Keyboard PS/2

Biasanya digunakan pada computer tipe ATX dan paling banyak digunakan, portnya sama dengan mouse.

c. Keyboard wirelless

Keyboard tipe ini tidak menggunakan kabel sebagai penghubung koneksi yang digunakan infra red,wifi ataupun Bluetooth.

d. Keyboard USB

Komputer terbaru saat ini sudah menggunakan jenis konfistor USB yang menjamin menstransfer data yang lebih cepat.
Dari sisi tombol yang digunakan, keyboard memiliki perkembangan yang tidak terlalu pesat sejak ditemukan pertama kali. Yang terjadi hanyalah penambahan – penambahan beberapa tombol bantu yang lebih mempercepat pembukaan aplikasi program.

Secara umum, struktur tombol pada keyboard terbagi atas 4, yaitu:

a. Tombol Ketik (typing keys)

Tombol ketik adalah salah satu bagian dari keyboard yang berisi huruf dan angka serta tanda baca. Secara umum, ada 2 jenis susunan huruf pada keyboard, yaitu tipe QWERTY dan DVORAK. Namun, yang terbanyak digunakan sampai saat ini adalah susunan QWERTY.

b. Numeric Keypad

Numeric keypad merupakan bagian khusus dari keyboard yang berisi angka dan sangat berfungsi untuk memasukkan data berupa angka dan operasi perhitungan. Struktur angkanya disusun menyerupai kalkulator dan alat hitung lainnya.

c. Tombol Fungsi (Function Keys)

Tahun 1986, IBM menambahkan beberapa tombol fungsi pada keyboard standard. Tombol ini dapat dipergunakan sebagai perintah khusus yang disertakan pada sistem operasi maupun aplikasi.

d. Tombol kontrol (Control keys)

Tombol ini menyediakan kontrol terhadap kursor dan layar. Tombol yang termasuk dalam kategori ini adalah 4 tombol bersimbol panah di antara tombol ketik dan numeric keypad, home, end, insert, delete, page up, page down, control (ctrl), alternate (alt) dan escape (esc).

Merk Keyboard :

a. GENIUS

b. LOGITECH

2. MOUSE

Mouse ditemukan pertama kali oleh Douglas Engelbert. Penunjuk (pointer) yang dapat digerakkan kemana saja berdasarkan arah gerakan bola kecil yang terdapat dalam mouse. Mouse memiliki sensor untuk mengetahui kemana arah yang dikehendaki oleh pemakainya, misalnya melalui bola dan cahaya. Untuk mouse yang memiliki sensor dengan menggunakan bola, jika kita membuka dan mengeluarkan bola kecil yang terdapat di belakang mouse, maka akan terlihat 2 pengendali gerak di dalamnya. Kedua pengendali gerak tersebut dapat bergerak bebas dan mengendalikan pergerakan penunjuk. Yang satu searah horisontal (mendatar) dan satu lagi vertikal (atas dan bawah).

Pada sebagian besar mouse terdapat tiga tombol, tetapi umumnya hanya dua tombol yang berfungsi, yaitu tombol paling kiri dan yang paling kanan. Namun ada tombol ketiga yaitu tombol scroll tombol yang berguna untuk menaik turunkan jendela windows

3. JOYSTICK

Joystick merupakan piranti masukan berupa tongkat, yang menangkap gerakan-gerakan dinamis, dan mengubah gerakan tersebut menjadi data untuk diolah oleh komputer. Joystick disebut juga penggerak penunjuk. Joystick biasanya digunakan sebagai alat permainan ( game ).

4. TRACK BALL

Merupakan perangkat yang sejenis dengan mouse atau stylus. Alat ini mirip mouse yang dibalik dan digunakan dengan menggelindingkan bolanya.

5. DIGITIZER

Merupakan piranti masukan yang menggunakan media magentis. Alat ini sangat tepat dan memudahkan dalam pemindahan gambar, misalnya peta, dari gambar kertas ke layar komputer. Digitizer banyak digunakan pada PDA .

6. VOICE RECOGNITION

Merupakan pengenal suara. Kemampuan mengenal secara spesifik suara individual mirip dengan pengenalan sidik jari. Teknologi ini memiliki kemampuan untuk menafsirkan kata-kata yang diucapkan oleh manusia. Dalam pengaplikasiannya, user bisa memberikan perintah secara lisan pada komputer. Misalnya user dapat menulis surat tanpa perlu mengetiknya. Untuk itu user harus menggunakan mikrofon. Program semacam ini banyak macamnya di antaranya adalah Via Voice dari IBM.

7. KAMERA

Kamera merupakan suatu alat yang digunakan untuk mengambil gambar, baik gambar diam ataupun bergerak dan merekamnya dalam bit-bit data yang kemudian akan dimasukkan dalam file komputer.

8. SCANNER

Scanner banyak digunakan untuk memindai gambar , tulisan , atau objek benda kedalam format elektronik sehingga dapat diolah komputer . Scanner akan mengukur cahaya untuk memperoleh image. Umumnya kualitas scanner dilihat pada kualitas gambar yang dihasilkannya .

9. MICROFON

Mic digunakan untuk memasukkan input berupa suara. Penggunaan mic memrlukan perangkat keras tambahan untuk menerima input suara tersebut yaitu sound card dan speaker untuk mendengarkan hasil rekaman suara.

Ada juga alat yang dapat menjadi alat input dan output yang disebut terminal. Terminal dapat dihubungkan langsung dengan komputer dengan menggunakan kabel dari USB (Universal Serial Bus ) atau alat yang lain . Terminal juga dibagi menjadi tiga yaitu :

a. Non intelligent terminal atau dumb terminal: hanya berfungsi sebagai perangkat untuk memasukkan input dan menampilkan output , namun tidak dapat memprogram semua itu karena tidak mempunyai alat pemproses.

b. Smart terminal : mempunyai alat pemproses dan memori didalamnya  sehingga input yang terlanjur dimasukkan dapat dikoreksi kembali program ini tidak dapat di program oleh pemakainya hanya bisa oleh pabrik buatannya saja.

c. Intellegent terminal : mempunyai alat pemproses dan memori didalamnya sehingga input yang terlanjur dimasukkan dapat dikoreksi kembali program ini dapat di program oleh pemakainya.

10. BARCODE READER

Barcode Reader/ scanner adalah perangkat untuk membaca kode-kode garis visual barcode. Hanya dengan menyapukan segaris sinar laser, ia dengan cepat membaca fragmen terang gelap pada barcode yang tercetak di kertas dengan sangat cepat dan akurat. Pada perkembangan selanjutnya, sinar laser yang dipancarkan tidak hanya sebentuk garis saja tapi berupa kombinasi pola yang rumit sehingga mampu membaca barcode dari sudut manapun.

Ada beberapa standar verifikasi untuk barcode reader, antara lain:

a. ANSI X3.182. UPC Code yang digunakan di US ANSI/UCC5. merupakan standar Amerika
b. ISO/IEC 15416 (barcode linear) dan ISO/IEC 15415 (2D bar codes) adalah standar internasional

c. Standar Eropa EN 1635 yang kemudian digantikan dengan ISO/IEC 15416

d.  ISO 15426-1 (linear bar code verifier compliance standard) atau ISO 15426-2 (2d bar code verifier compliance standard)

11.  TOUCH SCREEN & LIGHT PEN

Touch Screen
Light Pen
Touch screen (layar sentuh) merupakan layar monitor yang akan mengaktifkan program bila layarnya disentuh dengan tangan, (menggantikan mouse / keyboard), sedangkan Light pen digunakan untuk menyentuh layar monitor dengan pena khusus menggunakan light sensitive (photo electric).

Peralatan input yang tidak mempunyai fungsi ganda dapat dibedakan menjadi dua yaitu :

  1. Input langsung: input yang dimasukkan langsung diproses oleh alat pemproses. Contoh : keyboard , mouse , layar sentuh , tablet ,scanner , sensor pada kamera digital , serta microphone .
  2. Input tidak langsung : input yang dimasukkan tidak langsung diproses oleh alat pemproses . Contoh : magnetic disk ( disket , hard disk ) , optical disk ( CD , DVD , VCD ). Magnetic disk mampu menyimpan informasi berupa data dan program melalui magnetisasi suatu medium , sedangkan optical disk mampu menyimpan informasi melalui cahaya atau laser yang ditangkap oleh keping CD/VCD/DVD.

OUTPUT

 

Perangkat output adalah perangkat yang mengeluarkan data , program , atau yang lain sebagainya. Contohnya adalah:

1. MONITOR

Monitor/ Screen Monitor merupakan sarana untuk menampilkan apa yang kita ketikkan pada papan keyboard setelah diolah oleh prosesor. Monitor disebut juga dengan Visual Display Unit (VDU) Media output untuk menampilkan/memperlihatkan informasi sehingga dapat dibaca dan diketahui oleh manusia.

Jenis-jenis monitor:

a. Monitor CRT (Cathode Ray Tube)

Pada monitor jenis CRT, layar penampil menggunakan tabung katoda. Cara kerja dari teknologi ini untuk memunculkan tampilan pada monitor adalah dengan cara memancarkan sinar elektron ke suatu titik di layar. Sinar tersebut akan diperkuat untuk menampilkan sisi terang dan diperlemah untuk sisi gelap.

Teknologi CRT merupakan teknologi termurah dibanding dua jenis monitor lain, yaitu LCD dan Plasma Gas. Walaupun begitu, resolusi yang dihasilkan sudah cukup baik untuk berbagai keperluan. Adapun kekurangan dari teknologi CRT adalah diperlukanya teknologi listrik yang cukup besar dan memiliki radiasi elektromagnetik yang cukup kuat.

b. Monitor LCD (Liquid Crystal Display)

Sebuah monitor LCD menggunakan teknologi sejenis kristal liquid yang dapat berpencar, bukan lagi menggunakan tabung elektron seperti yang digunakan oleh monitor jenis CRT. Teknologi yang dihasilkan berupa monitor yang dikenal dengan nama Flat Panel. Display dengan layar berbentuk pipih dan kemampuan resolusi yang lebih tinggi dibandingkan dengan CRT. Karena mampunyai bentuk yang pipih, monitor jenis flat tersebut menggunakan energi yang kecil dan banyak digunakan pada komputer–komputer portable.

Kelebihan lain dari monitor LCD adalah terdapatnya Brightness ratio yang telah menyentuh angka 350 : 1. Brighness ratio merupakan perbandingan antara tempilan yang paling gelap dengan tampilan yang paling terang. Beberapa waktu lalu, monitor berjenis LCD ini masih mempunyai masalah pada resolusi. Saat itu, monitor dengan resolusi 1024 X 768 akan terkesan agak buram jika dipekerjakan pada resolusi 640 X 420. Tetapi masalah tersebut sudah dapat di atasi dengan teknik anti aliasting.

Dengan teknologi yang disajikan, rasanya pantas juga monitor LCD untuk mematok harga yang lebih mahal di banding minitor berjenis CRT.

c. Monitor Plasma Gas

Monitor berjenis plasma merupakan inovasi baru dari teknologi yang digunakan oleh monitor. Dengan menggabungkan teknologi CRT dan LCD dapat menghasilkan teknologi yang membuat layar dengan ketipisan menyerupai LCD dan sudut pandang yang dapat selebar teknologi CRT. Teknologi plasma gas juga menggunakan fosfor seperti pada teknologi CRT, tetapi layar pada plasma gas dapat berpencar tanpa adanya bantuan cahaya di belakang layar. Hal ini membuat energi yang diserap tidak sebesar monitor CRT. Kontras warna yang di hasilkan pun lebih baik dari monitor CRT. Monitor dengan teknologi Plasma Gas ini dapat kita jumpai di berbagai pertunjukan, jika kita lihat ada monitor raksasa, itulah monitor yang menggunakan teknologi plasma gas.

2. LCD PROYEKTOR

LCD proyektor berfungsi untuk menampilkan gambar hasil dari pemprosesan data. Hanya saja LCD membutuhkan perangkat lain yang dapat menerima data & program tersebut. Mediumnya lebih baik berwarna putih dan berbidang datar.

3. PRINTER

Merupakan alat pencetak. Istilah ini umum digunakan untuk pencetak karakter atau gambar ke suatu media (seperti kertas). Printer mempunyai satuan kecepatan yaitu CPS (Character per Second) , LPM (Line per Minute) , atau PPM (Pages per Minute).

Jenis-jenis printer:

1. Dot matrix printer : printer yang menggunakan susunan pin yang akan menekan ribbon  keatas kertas.

2. Ink Jet Printer: bekerja dengan menyemprotkan tinta ke kertas sesuai dengan kadarnya

3. Laser Printer : gabungan teknologi laser dengan fotocopy, output digital dari komputer akan diubah menjadi pulsa sinar laser. Bayangan yang ditangkap di drum akan dikirim ke kertas dengan proses seperti mesin fotocopy

4. SPEAKER

Speaker digunakan untuk menampilkan suara-suara. Inputnya didapatkan dari device sound card yang merubah sinyal digital menjadi sinyal yang dapat didengar oleh manusia.

Monitor CRT (Cathode Ray Tube)
Pada monitor jenis CRT, layar penampil menggunakan tabung katoda. Cara kerja dari teknologi ini untuk memunculkan tampilan pada monitor adalah dengan cara memancarkan sinar elektron ke suatu titik di layar. Sinar tersebut akan diperkuat untuk menampilkan sisi terang dan diperlemah untuk sisi gelap.

Teknologi CRT merupakan teknologi termurah dibanding dua jenis monitor lain, yaitu LCD dan Plasma Gas. Walaupun begitu, resolusi yang dihasilkan sudah cukup baik untuk berbagai keperluan. Adapun kekurangan dari teknologi CRT adalah diperlukanya teknologi listrik yang cukup besar dan memiliki radiasi elektromagnetik yang cukup kuat.

Monitor LCD (Liquid Crystal Display)
Sebuah monitor LCD menggunakan teknologi sejenis kristal liquid yang dapat berpencar, bukan lagi menggunakan tabung elektron seperti yang digunakan oleh monitor jenis CRT. Teknologi yang dihasilkan berupa monitor yang dikenal dengan nama Flat Panel. Display dengan layar berbentuk pipih dan kemampuan resolusi yang lebih tinggi dibandingkan dengan CRT. Karena mampunyai bentuk yang pipih, monitor jenis flat tersebut menggunakan energi yang kecil dan banyak digunakan pada komputer–komputer portable.

Kelebihan lain dari monitor LCD adalah terdapatnya Brightness ratio yang telah menyentuh angka 350 : 1. Brighness ratio merupakan perbandingan antara tempilan yang paling gelap dengan tampilan yang paling terang. Beberapa waktu lalu, monitor berjenis LCD ini masih mempunyai masalah pada resolusi. Saat itu, monitor dengan resolusi 1024 X 768 akan terkesan agak buram jika dipekerjakan pada resolusi 640 X 420. Tetapi masalah tersebut sudah dapat di atasi dengan teknik anti aliasting.

Dengan teknologi yang disajikan, rasanya pantas juga monitor LCD untuk mematok harga yang lebih mahal di banding minitor berjenis CRT.

Monitor Plasma Gas
Monitor berjenis plasma merupakan inovasi baru dari teknologi yang digunakan oleh monitor. Dengan menggabungkan teknologi CRT dan LCD dapat menghasilkan teknologi yang membuat layar dengan ketipisan menyerupai LCD dan sudut pandang yang dapat selebar teknologi CRT. Teknologi plasma gas juga menggunakan fosfor seperti pada teknologi CRT, tetapi layar pada plasma gas dapat berpencar tanpa adanya bantuan cahaya di belakang layar. Hal ini membuat energi yang diserap tidak sebesar monitor CRT. Kontras warna yang di hasilkan pun lebih baik dari monitor CRT. Monitor dengan teknologi Plasma Gas ini dapat kita jumpai di berbagai pertunjukan, jika kita lihat ada monitor raksasa, itulah monitor yang menggunakan teknologi plasma gas.

Sistem I/O

Arsitektur Sistem Komputer

Perangkat Keras I/O

1. Banyaknya jenis perangkat keras I/O
2. Konsep Umum :
a. Port
b. Bus (Daisy chain atau shared direct access)
c. Controller (host adapter)
3. Perangkat kontrol instruksi I/O
4. Perangkat-perangkat tersebut memiliki alamat, digunakan untuk:
a. Instruksi I/O langsung
b. Memory-mapped I/O

Jenis Perangkat Keras

1. Perangkat penyimpan data
2. Perangkat penghubung
3. Perangkat antarmuka dengan user


Polling

1. Host terus membaca busy-bit secara berulang-ulang sampai bit tersebut clear
2. Host set write-bit di command-register dan menulis satu byte di data-out register
3. Host set bit command-ready
4. Ketika controller mengetahui kalau bit command-ready di-set, dia men-set busy bit
5. Controller membaca command-register dan melihat perintah tulis. Dia membaca data-out register untuk mendapatkan
bytenya, dan melakukan operasi I/O
6. Controller menghapus bit command-ready, membersihkan bit error di status register yang menandakan operasi I/O berhasil, dan menghapus busy-bit yang menandakan kalau operasi
sudah selesai.

Interrupt

Mekanisme Interrupt

1. Jalur interrupt dihasilkan oleh perangkat I/O
2. Interrupt Handler menerima interrupt tersebut
3. Mekanisme interrupt juga digunakan untuk penanganan exception

Direct Memory Access (DMA)
DMA Transfer

1. Generasi komputer yang sangat tua
a. Controller membaca dari perangkat
b. Sistem Operasi meminta controller membaca data
2.Generasi komputer yang tua
a. Controller membaca dari perangkat
b. Controller meng-interrupt OS
c. Sistem Operasi menyalin data ke memori
3. Generasi DMA
a. Controller membaca dari perangkat
b. Controller menyalin data ke memori
c. Controller meng-interrupt OS

I/O Subsystem

Kernel I/O Subsystem

Scheduling

1. Permohonan I/O dilakukan berdasarkan antrian perangkat
2. Beberapa sistem operasi berusaha untuk seadil mungkin

Buffering

Yakni menyimpan data di memori selama proses transfer antar perangkat
1. Solusi perbedaan kecepatan dari perangkat yang ada
2. Solusi perbedaan ukuran transfer perangkat

Caching

1. Cache : area memori yang cepat, yang berisikan kopian-kopian data.
2. Beda BUFFER dan CACHE :
a. Buffer dapat menyimpan satu-satunya copy dari sebuah item data yang ada.
b. Cache hanya menyimpan sebuah salinan dari data di tempat lain pada storage sehingga lebih cepat diakses.
3. Peningkatan performa I/O, terutama untuk:
a. berkas yang digunakan secara bersama oleh beberapa aplikasi
b. berkas yang sedang di baca/tulis secara berulang-ulang.

Spooling

1. Spool : buffer yang menyimpan output device
a. Tidak dapat menerima interleaved data stream.
2. 1 device memenuhi 1 permintaan, tapi aplikasi bisa minta bersamaan.
3. Sistem operasi meng-intercept semua output ke device. Masing-masing output aplikasi di-spooled ke berkas disk yang berbeda.
4.  Setiap Sistem Operasi menyediakan control interface yang :
a. Membuat users dan administrator sistem menampilkan antrian
b. Menyingkirkan pekerjaan yang tidak diinginkan.

Error Handling

1. Sistem Operasi dengan pelindung memori dapat bertahan dari berbagai jenis error dari perangkat keras dan aplikasi.
2. Sistem Operasi sulit memperbaiki kesalahan permanen bila terjadi pada komponen penting,.
3. Umumnya akan me-return sebuah error number atau kode ketika permintaan I/O gagal.
4. Log system error menyimpan laporan masalah yang ada.

Meningkatkan Kinerja I/O

1. Memperkecil jumlah context switch
2. Memperkecil jumlah penyalinan data yang dilakukan sewaktu pengoperan data antara device dan aplikasi
3. Memperkecil jumlah interrupt dengan menggunakan transfer secara besar-besaran, smart controllers dan polling (jika busywaiting bisa diminimalisir)

4.Menambah konkurensi dengan menggunakan DMA controllers atau channels yang telah diketahui untuk meng-offload
penyalin sederhana dari CPU
5. Memindahkan proses-proses primitif ke perangkat keras, untuk membuat operasinya dalam device controllers konkuren dengan CPU dan operasi Bus
6. Menyeimbangkan CPU, memory subsystem, bus, dan I/O performance, karena kelebihan di salah satu area akan membuat keterlambatan pada yang lain.

Cara Troubleshooting pada PC

Komputer sudah merupakan alat bantu yang tergolong penting saat ini, kita ambil salah satu contoh pada kegiatan perkantoran, tentunya dengan adanya komputer maka pekerjaan dapat diselesaikan dengan lebih cepat. Sebagai pengguna atau pemakai komputer tentunya kita juga pernah mengalami masalah dengan komputer. Hal tersebut dapat diakibatkan adanya ketidaksesuaian dari komponen dasar komputer itu sendiri yang biasanya berkaitan dengan Software (perangkat lunak atau aplikasinya), Hardware (perangkat keras) atau Brainware (si pemakai komputer).

Pengertian Troubleshooting Komputer

Dalam dunia komputer, segala sesuatu masalah yang berhubungan dengan komputer disebut Troubleshooting dan timbulnya masalah dalam komputer tentu ada sebabnya. Pada kesempatan ini kita akan sedikit belajar untuk mendeteksi masalah pada komputer Anda terutama yang berhubungan dengan Hardware.

Untuk permasalahan dengan Software sebaiknya Anda lakukan pendeteksian sederhana dahulu seperti pemeriksaan file-file yang berhubungan dengan Software atau spesifikasi permintaan (requirement) dari Software. Apabila permasalahannya cukup rumit, sebaiknya Anda install ulang saja Software tersebut, karena akan terlalu rumit untuk memperbaiki sebuah Software.

 

Teknik dalam Troubleshooting

Terdapat dua macam teknik dalam mendeteksi permasalahan dalam komputer, yaitu teknik Forward dan teknik Backward. Untuk lebih mengenal kedua teknik tersebut, ada baiknya kita bahas terlebih dahulu definisi dari masing-masing teknik tersebut.

1. Teknik Forward

Sesuai dengan namanya, maka dalam teknik ini segala macam permasalahan dideteksi semenjak awal komputer dirakit dan biasanya teknik ini hanya digunakan oleh orang orang dealer komputer yang sering melakukan perakitan komputer. Pada teknik ini hanya dilakukan pendeteksian masalah secara sederhana dan dilakukan sebelum komputer dinyalakan (dialiri listrik).

Untuk mempermudah silakan simak contoh berikut :
§ Setelah komputer selesai dirakit, maka dilakukan pemeriksaan pada semua Hardware yang telah terpasang, misalnya memeriksa hubungan dari kabel Power Supply ke soket power pada Motherboard.

§ Untuk casing ATX, kita periksa apakah kabel Power Switch sudah terpasang dengan benar.

2.Teknik Backward

Hampir sama dengan teknik sebelumnya, teknik Backward adalah teknik untuk mendeteksi kesalahan pada komputer setelah komputer dinyalakan (dialiri listrik). Teknik lebih banyak digunakan karena pada umumnya permasalahan dalam komputer baru akan timbul setelah “jam terbang” komputernya sudah banyak dan ini sudah merupakan hal yang wajar.

Dapat kita ambil beberapa contoh sebagai berikut :

§ Floppy Disk yang tidak dapat membaca disket dengan baik.

§ Komputer tidak mau menyala saat tombol power pada casing ditekan.

 

Analisa Pengukuran

Pada tahapan ini, pendeteksian masalah dengan cara mengukur tegangan listrik pada komponen power supple, motherboard, speaker. Gunakan alat bantu seperti multitester untuk mengukur tegangan yang diterima atau diberikan komponen tersebut.

Contoh : Mengukur tegangan listrik yang diterima oleh Power Supply, lalu mengukur tegangan yang diberikan oleh Power Supply ke komponen lainnya.

 

Analisa Suara

Pada tahapan ini pendeteksian masalah menggunakan kode suara (beep) yang dimiliki oleh BIOS dan dapat kita dengar lewat PC Speaker. Pastikan kabel PC Speaker sudah terpasang dengan baik. Kemungkinan letak permasalahan ada di komponen nomor 4 dan 5.

Untuk mempermudah pengenalan kode suara tersebut, silakan simak keterangan berikut :
§ Bunyi beep pendek satu kali, artinya sistem telah melakukan proses Boot dengan baik.
§ Bunyi beep pendek 2 kali, artinya ada masalah pada konfigurasi atau seting pada CMOS.
§ Bunyi beep panjang 1 kali dan pendek 1 kali, artinya ada masalah pada Motherboard atau DRAM.
§ Bunyi beep panjang 1 kali dan pendek 2 kali, artinya ada masalah pada monitor atau VGA Card.
§ Bunyi beep panjang 1 kali dan pendek 3 kali, artinya ada masalah pada Keyboard.
§ Bunyi beep panjang 1 kali dan pendek 9 kali, artinya ada masalah pada ROM BIOS.

§ Bunyi beep panjang terus-menerus, artinya ada masalah di DRAM.

§ Bunyi beep pendek terus-menerus, artinya ada masalah penerimaan tegangan (power).

§ Pada beberapa merk Motherboard akan mengeluarkan bunyi beep beberapa kali apabila temperatur processornya terlalu tinggi (panas).

Catatan : kode bunyi beep diatas berlaku pada AWARD BIOS, untuk jenis BIOS yang lain kemungkinan memiliki kode bunyi beep yang berbeda.

 

Analisa Tampilan

Pada tahapan ini pendeteksian masalah cenderung lebih mudah karena letak permasalahan dapat diketahui berdasarkan pesan error yang ditampilkan di monitor. Kemungkinan letak permasalahan ada di komponen nomor 6 sampai 9.

Contoh : Pada saat komputer dinyalakan tampil pesan Keyboard Error, maka dapat dipastikan letak permasalahan hanya pada Keyboard.

 

Cara Cepat Mengenali Troubleshooting

§ Apabila terjadi masalah dan sistem masih memberikan tampilan pesan pada monitor atau disertai dengan bunyi beep 1 atau 2 kali, maka kemungkinan letak permasalahan ada di komponen nomor 6 sampai 9, yaitu pada Keyboard, Card I/O, Disk Drive dan Disket.
§ Apabila terjadi masalah dan sistem memberikan kode bunyi beep lebih dari 2 kali, maka kemungkinan letak permasalahan ada di komponen nomor 4 dan 5, yaitu RAM, VGA Card dan Monitor.

§ Sedangkan untuk masalah yang tidak disertai pesan pada monitor atau kode bunyi beep, kemungkinan besar letak permasalahan ada di komponen nomor 1 dan 2, yaitu Power Supply dan Motherboard.

Dengan kedua macam teknik dalam pendeteksian maslah dalam komputer tersebut, tentunya akan lebih memperkaya pengetahuan kita di bidang komputer, jadi jika suatu saat terdapat masalah pada komputer Anda kita dapat melakukan pemeriksaan terlebih dahulu sebelum membawa ke tempat servis, kalaupun harus membawa ke tempat servis kita sudah mengerti letak permasalahannya, jadi kita tidak dibohongi oleh tukang servis yang nakal

 

Troubleshooting Motherboard

Kalau prosesor dianggap sebagai “otak” komputer, maka motherboard boleh dianggap merupakan “jantung” kehidupan di PC. Sebagai komponen yang menyandang “beban berat” kerusakan sedikit saja bisa membikin PC tersengal-sengal.

Pada komputer generasi awal, komponen seperti prosesor dan Ram langsung dilekatkan pada motherboard tanpa bisa diganti-ganti atau ditambah lagi. Model semcam ini dinamakan backplane. Desain baru yang bersifat modular memungkinkan penggantian beberapa komponen yang melekat pada motherboard secara mudah, sekaligus memberikan keleluasaan tersedianya peluang-peluang peningkatan teknologi PC itu sendiri.

Namun, kemudahan senantiasa mengandeng resiko. Begitu pula dengan motherboard. Sejak motherboard dijadikan “sasaran tembak” utama untuk menghasilkan PC yang optimal, kita dihadapkan pada keruwetan-keruwetan yang semakin besar. Mari tunjuk beberapa contoh.

Peningkatan kebutuhan prosesor yang bertenaga membuat desain motherboard harus mengikuti tuntutan perkembangan  prosesor. Kebutuhan akan transfer data yang lebih cepat membutuhkan desain motherboard terus berubah. Perkembangan-perkembangn terbaru seperti teknologi Fire Ware, USB 2.0, RAID System, Smart Card, Secure Digital, wireless, semuanya berkumpul pada lahan yang sama : motherboard.

Meski untuk saat ini belum semua teknologi tersebut populer, namun untuk memberi daya tarik suatu produk motherboard para produsen pun tak kurang akal. Mereka beramai-ramai menyediakan ruang upgrade itu, tanpa harus menyertakannya ketika ia diproduksi secara massal, untuk tetap membuatnya tetap ekonomis.

Beragamnya tipe chipset pada motherboard yang menjadi tolak ukur dukungan teknis juga kian membuat para pengguna dipusingkan untuk memilih mana yang terbaik. Belum lagi selesai dengan masalah yang satu ini, kita juga dihadapkan dengan berbagai kekhawatiran, bagaimana mengatasi persoalan bilaman terjadi motherboard sebagai jantung PC, masalah
sedikit saja bisa membuat PC termehek-mehek.

Justru dengan banyaknya pilihan tersebut, kunci pertama supaya kita tetap tidak tersesat delam belantara adalah memahami seni arsitektur mother board, dan membekali diri dengan kemampuan praktis yang mumpuni. Berikut ini langkah-langkahnya.

Repair or Replace

Keputusan untuk mereparasi sangat ditentukan oleh tingkat kerusakan yang terjadi pada sebuah motherboard. Sementara, langkah penggantian sangat tergantung oleh tingkat daya dukung teknologi motherboard ataupun kemampuan ekonomi Anda dalam membelanjakan barang-barang komputer. Masalahnya adalah bagaimana seandainya motherboard itu masih
terhitung baru, sementara kita tidak mampu mendeteksi kerusakan atau menentukan jalan keluarnya ? ikuti dulu langkah kedua sebelum memutuskan untuk membeli yang baru.

Back to Basics !

· Periksa semua konektor. Tentu saja, langkah ini diperlukan untuk memastikan bahwa tidak ada satu konektor pun yang terlepas atau tidak tertancap dengan benar.
· Periksa semua komponen yang melekat. Ini penting untuk memdeteksi, apakah pemasangan prosesor, RAM, VGA Card sudah benar atau belum. Juga untuk memastikan bahwa secara fisik IC-IC di dalam motherboard tidak mengalami kerusakan atau terlepas.

· Periksa sumber listrik yang masuk melalui power suplay. Untuk memastikannya, periksa dulu suplai listrik dari jala listrik, lalu periksalah output listrik pada kabel-kabel power supply dengan menggunakan multimeter. Pastikan bahwa output tiap kabel sudah sesuai dengan yang direkomendasikan pada buku manual.

· Periksa, adakah barang-barang asing yang menggangu jalur motherboard. Kabel, sekrup, kotoran, juga debu bisa mempengaruhi nafas kehidupan motherboard. Gangguan semacam ini, selain membuat lalu lintas data terganggu, bila posisinya strategis bisa menimbulkan hubungan pendek alias konslet.

· Periksa jumper-jumper, DIP switch, atau pin-pin pengatur setiap fitur dengan teliti dan benar. Pastikan bahwa Anda mengacu pada buku manual jangan menggunakan ilmu hafalan. Setting yang salah bisa membuat motherboard Anda tak mau hidup.

· Periksa bagian-bagian motherboard yang melekat pada casing. Hubungan pendek akibat penguncian tanpa isolator antara casing, sekrup pengunci dengan motherboard akan membuat listrik terhenti setiap kali tombol power ditekan.

 

Sistem PC tidak menyala ketika kartu grafis onboard diganti dengan VGA Card

Masalah semacam ini sering terjadi ketika pengguna hendak melakukan upgrade kartu grafis pada motherboard yang memiliki VGA add on yang terpasang. Namum, pada sebagian motherboard, Anda harus melakukan pergantian setting secara manual. Sebenarnya ini tidak akan terjadi kalau Anda tahu tips dan triknya. Biasanya masalah akan terjadi ketika kartu grafis add on ditancapkan dan Anda melakukan booting untuk pertama kalinya. Sistem kemudian tidak menyala sama sekali. Bahkan tidak mengeluarkan bunyi beep sama sekali.

Langkah pertama yang harus dilakukan adalah menggunakan kembali VGA onboard Anda. Ketika Sudah masuk sistem Windows, lakukan uninstall driver VGA onboard yang Anda pakai. Setelah itu, lakukan restart kembali sistem Anda untuk kemudian masuk pada menu BIOS. Pada menu ini, Anda harus mematikan atau mend-disable fitur VGA onboard. Setelah
mematikan fungsi ini keluarlah dari BIOS dan matikan sistem.

Langkah selanjutnya adalah pasang kartu grafis add on Anda pada slot AGP atau slot PCI sesuai dengan tipe kartu grafis yang hendak Anda pakai. Setelah tertancap dengan benar pada slot yang sesuai, nyalakan kembali sistem Anda. Sistem akan kembali menyala dengan kartu grafis add on sebagai kartu grafis utama. Jangan lupa untuk menginstall driver terbaru yang sesuai dengan kartu grafis tersebut.

 

Sistem tidak bekerja ketika prosesor diganti

Kejadian ini amat sering terjadi ketika Anda hendak melakukan upgrade atau downgrade dengan menggunakan prosesor yang memiliki front side bus yang berbeda. Misalnya ketika Pentium Anda ber-FSB 533 MHz Anda ganti dengan yang ber-FSB 400 MHz, sementara BIOS Anda masih men-setting sistem bekerja pada FSB 533 MHZ.

Agar sistem mau bekerja kembali, ada dua cara yang bisa ditempuh. Cara pertama adalah masuk ke sistem BIOS dan menganti FSB yang dipakai dari 133 MHZ manjadi 100 MHz. Ini dengan catatan kalau sistem motherboard dan prosesor Anda masih bisa mentolerir penggunaan FSB yang jauh lebih tinggi dibanding yang dipakai.

Cara lain adalah melakukan clear CMOS. Apabila langkah ini sudah dilakukan. Masuklah ke menu BIOS Anda dan pastikan FSB yang dipakai sudah sesuai dengan FSB yang bekerja pada prosesor Anda. Langkah ini dijamin manjur untuk mengatasi masalah yang semacam ini.

 

Sistem tidak bekerja ketika modul memori DDR diganti

Ada beberapa kemungkinan maslah yang mungkin jadi penyebab mangapa masalah semacam ini terjadi. Pertama adalah kompatibilitas motherboard yang dipakai terhadap memori baru yang dipasang. Penyebabnya ada dua, yaitu masalah chip memori yang digunakan atau maslah tipe memori yang dipakai. Beberapa motherboard mensyaratkan secar tegas jenis chip yang dipakai. Apabila tidak sesuai, motherboard tidak akan mendeteksi adanya memori yang berakibat pada tidak bekerjanya sistem. Sementara beberapa motherboard juga tidak mau dipasangi memori tipe single side atau double side. Sekali lagi ini masalah kompatibilitas motherboard terhadap memori yang dipasang. Apabila masalahnya adalah chip memori, update BIOS terkadang bisa jadi salah satu pemecahan jitu.

Kemungkinan kedua adalah tipe memori yang dipasang memiliki CAS latency yang lebih rendah ketimbang CAS latency memori sebelumnya, sementara pada BIOS latency masih di- setting pada CAS-2. cara satu-satunya adalah dengan melakukan reset atau clear BIOS. Setelah itu masuklah pada menu BIOS yang mengatur latency yang bekerja pada memori dan ubah sesuai dengan kemampuan memorinya. Yang paling aman adalah dengan mengubah
latency yang bekerja pada CL-2,5.

 

Sistem tidak bekerja meski semua power sudah terpasang
Bisa jadi masalah ini muncul lantaran beberapa penyebab. Pertama periksa apakah ada aliran listrik yang masuk pada motherboard. Ini penting untuk memastikan adakah aliran listrik yang mengalir pada motherboard. Pada sebagian besar motherboard, indikasi adanya arus listrik yang mengalir ini ditandai dengan lampu LED yang menyala. Kalau lampu ini tidak menyala, bisa dipastikan tidak ada arus listrik yang mengalir.

Kedua, kemungkinan power suplay yang tidak terlalu bagus alias tidak memiliki tenaga yang sesuai. Cara satu-satunya adalah menganti power suplay yang Anda punya dengan yang lebih bagus.

Penyebab ketiga yang mungkin adalah tidak terpasangnya kartu grafis dengan benar. Ini memang biasa terjadi kalau Anda sembrono memasang kartu grafis add on. Untuk mengatasinya, Anda bisa memperbaiki posisi pemasangan. Usahakan agar posisinya tegak lurus terhadap motherboard.

Penyebab keempat yang sering tidak terbayang adalah rusaknya tombol power atau koneksinya yang menghubungkan front panel dengan tombol power pada casing depan. Ini menyebabkan Anda tidak dapat menyalakan sistem meski semua terpasang dengan benar.

 

Sistem tiba-tiba hang ketika di overclock

Ada beberapa penyebab untuk masalah ini. Penyebab pertama ada pada beberapa komponen yang membutuhkan frekuensi kerja yang lebih tinggi. Ini misalnya terjadi untuk AGP ataupun PCI yang terpasang. Untuk melakukan ini, Anda bisa masuk ke BIOS dan menaikkan frekuensi kerjanya. Ini pun dengan catatan apabila motherboard yang Anda pakai memangmendukung.

Penyebab kedua adalah kurangnya tegangan yang dipakai. Untuk itu, Anda juga bisa masuk ke menu BIOS dan melakukan penaikan tegangan, baik pada prosesor atau memori. Tapi cara ini riskan kaerena sangat tergantung pada kemampuan dan daya tahan motherboard, prosesor, memori, ataupun kartu grafis yang dipasang. Ini kareena kenaikan tegangan akan
mempengaruhi kerja dari beberapa periferal yang terpasang.

 

Sistem tidak bekerja karena hardisk tidak terdeteksi

Masalah ini sering sekali muncul pada beberapa motherboard. Kesalahan sendiri terjadi bukan pada motherboard-nya, tetapi pada kabel data yang Anda gunakan. Kesalahan ini biasanya muncul karena Anda menggunakan port secondary dan bukan port primary meskipun Anda tidak menggunakannya buat CD-ROM atau drive lain. Pada beberapa sistem,
motherboard tidak akan mendeteksi lantaran penggunaan kabel data semacam ini. Solusi yang bisa dilakukan adalah menggunakan port utama pada kabel IDE untuk hardisk sementar secondary untuk CD-ROM drive atau yang lain.

 

Sistem tidak bekerja ketika kabel fan CPU tidak dipasang

Ini biasa terjadi pada beberapa motherboard yang memiliki tingkat keamanan yang cukup baik. Pada mother board yang demikian, sistem tidak akan mau bekerja kalau kabel fan tidak terpasang pada pin yang sesuai yaitu pun CPU fan. Ini dimaksudkan untuk menjamin agar fan bekerja untuk melindungi prosesor dari panas berlebihan. Nah, kalau Anda tidak memasang kabel fan pada pin power fan, atau bahkan tidak memasang pada salah satu pin, otomatis sistem tidak akan bekerja. Langkah satu-satunya yang diambil adalah memasang kabel fan CPU pada pin yang sesuai.

 

Ketika booting sistem nyatakan disk fail

Masalah ini muncul kalau Anda tidak memiliki floppy drive sementara pada BIOS fitur ini masih difungsikan. Cara satu-satunya adalah masuk ke menu BIOS dan matikan fitur yang satu ini.

 

Sistem tidak bekerja ketiga primary graphic adapter diganti

Ini biasa terjadi pada motherboard yang memiliki fitur VGA onboard. Ketika akan diganti dengan kartu grafis add on, baik yang berebasis PCI ataupun AGP. Ketika setting yang dipasang tidak sesuai dengan kondisi nyata, sistem tidak akan mampu melakukan booting. Satu-satunya langkah yang bisa diambil adalah dengan melakukan clear CMOS atau bahkan mencabut baterai CMOS kalau jumper untuk melakukan clear CMOS tidak ada. Ini untuk memaksa motherboard kembali pada posisi default. Setelah booting dapat dilakukan, masuk pada menu BIOS dan ubah setting primary graphic adapter sesuai dengan jenis kartu grafis yang dipasang. Apabila Anda memasang kartu grafis berbasis AGP, setting fitur ini pada AGP add on.

 

BIOS yang terkunci Password

Password BIOS biasanya digunakan user untuk melindungi setting BIOS pada komputer. Dan bila Anda ingin mereset password pada BIOS tidak terlalu susah untuk mengkoneksikan bateray CMOS nya, dengan sedikit trik pada Dos, Anda bisa mereset BIOS tersebut. Pertama keluarlah dari Windows atau me-reboot komputer, jalankan komputer pada MS-DOS
mode, gunakan pilihan “ Command prompt only”
Pada C:\> prompt, ketik :
DEBUG
Tekan enter. Anda akan melihat tanda ( – ) pada DEBUG prompt, kemudia ketik: o 70 2e
Pada DEBUG prompt akan ditampilkan seperti –o 70 2e. Tekan enter, ketik :

o 71 ff
Tekan enter, terakhir ketik :
QTekan enter, makan Anda akan keluar dari DEBUG prompt dan kembali pada C:\> prompt
Sekarang reboot PC Anda, tekan tombol del, dan password untuk memasuki Setup BIOS pun sudah lenyap.

Cara Setting VMware


1. Untuk memulai instalasi, carilah file VMware dan double-click pada “VMware-workstation-6.0.0-45731”.

2. Persiapan instalasi akan dimulai.

3. Kotak dialog akan muncul, user mengklik next, kemudian dilanjutkan dengan memilih typical.

4. Untuk instruksi berikutnya, klik next sebanyak empat kali.

5. Instalasi mulai berjalan, user harap menunggu.

6. Setelah instalasi selesai, klik finish.

7. Komputer akan reboot demi menyempurnakan proses instalasi.

8. Selepas komputer di-reboot, double-click pada shortcut VMware  yang ada di desktop.

9. Akan muncul “VMWare Workstation”. Klik file, new, virtual machine.

10. Klik next, kemudian pilih typical.

11. Klik next. Pilih Microsoft Windows pada Guest operating system dan Windows XP Professional pada Version.

12. Untuk dua instruksi berikutnya, klik next.

13. Pilih Use bridged networking, lalu klik next.

14. Ganti disk size menjadi 5.0 GB dan pilih Allocate all disk space now.

15. User mengklik finish, kemudian proses pembuatan disk akan berjalan.

16. Virtual machine telah berhasil dibuat, klik close.

Setting Windows XP Professional

1. Setelah virtual machine berhasil dibuat, maka di bagian Favourite akan terdapat Windows XP Professional. Right-click dan pilih setting.

2. Akan muncul kotak dialog Virtual machine settings, pilih CD-ROM.

3. Bagi user yang menggunakan ISO Image, pilih ISO Image.

4. Klik browse, kemudian cari filenya.

5. Setelah memasukkan ISO Image, akan muncul instalasi berikutnya.

6. Ikuti langkah-lagkah berikutnya dan tunggu sampai selesai.

Cara Setting Jaringan Ad Hoc

 

Jaringan Ad Hoc merupakan kumpulan dari beberapa node jaringan wireless multihop yang dinamis. Setiap nodenya mempunyai interface wireless untuk berkomunikasi dengan node lainnya. Jaringan Ad Hoc mempunyai infrastruktur node jaringan yang tidak permanen. Jaringan ini terdiri atas beberapa node yang bersifat mobile dengan satu atau lebih interface pada setiap nodenya. Setiap node pada jaringan Ad Hoc harus mampu menjaga performance trafik paket data dalam jaringan akibat sifat mobilitas node dengan cara rekonfigurasi jaringan. Sebagai contoh, jika ada node yang bergeser yang mengakibatkan gangguan berupa putus jaringan, maka node yang mengalami gangguan tersebut dapat meminta pembentukan rute link baru untuk meneruskan pengiriman paket data. Beberapa contoh penerapan jaringan Ad Hoc antara lain pembangunan jaringan komunikasi di medan perang untuk beberapa lokasi, pusat-pusat komunikasi di daerah bencana alam, sarana koneksi internet pada stand-stand suatu event/pameran dimana tidak dimungkinkan untuk membangun jaringan kabel atau ketidaktersediaan jaringan kabel.

Karakteristik Jaringan Ad Hoc

Node-node pada jaringan Ad Hoc tidak hanya berperan sebagai pengirim dan penerima data, namun dapat berperan sebagai penunjang node yang lainnya, misalnya mempunyai kemampuan layaknya router. Dengan demikian diperlukan adanya routing protokol dalam jaringan Ad Hoc untuk menunjang proses kirim terima antar node-nodenya. Berikut beberapa karakteristik jaringan Ad Hoc :

a. Multiple wireless link : setiap node yang mempunyai sifat mobility dapat memiliki beberapa interface yang terhubung ke beberapa node lainnya.

b. Dynamic topology : dikarenakan sifat node yang mobile, maka topologi jaringannya dapat berubah secara random/acak. Sebagai akibatnya routing protocol mempunyai masalah yang lebih kompleks dibandingkan dengan jaringan wired dengan node yang tetap.

c. Limited resources : seperti jaringan wireless lainnya, jaringan Ad Hoc dibatasi oleh masalah daya dan kapasitas memori.

 

Routing Protokol pada Jaringan Ad Hoc

Routing adalah mekanisme penentuan link dari nodepengirim ke node penerima yang bekerja pada layer 3 OSI (Layer Network). Protokol routing diperlukan karena untuk mengirimkan paket data dari node pengirim ke node penerima akan melewati beberapa node penghubung (intermediate node), dimana protokol routing berfungsi untuk mencarikan route link yang terbaik dari link yang akan dilalui melalui mekanisme pembentukan tabel routing. Pemilihan route terbaik tersebut didasarkan atas beberapa pertimbangan seperti bandwith link dan jaraknya. Jaringan Ad Hoc memiliki dua model protokol routing.

Pertama, protokol routing yang bersifat reaktif (reactive), dimana tabel routing dibentuk jika ada permintaan pembuatan route link baru atau perubahan link. Kedua, protokol routing yang bersifat proaktif (proactive), dimana tabel routing dibentuk dan diupdate setiap waktu (secara kontinu) jika terjadi perubahan link, maka routing protokol pada jaringan Ad Hoc dapat diklasifikasikan sebagai berikut :

 

Destination Sequenced Distance Vector (DSDV)

Prinsip kerja protokol routing ini mengacu kepada algoritma penentuan route Bellman-Ford berdasarkan nilai pembobotan setiap link. Setiap node menjaga tabel routingnya yang berisi arah tujuan, jumlah hop setiap tujuan dan sequence number. Proses update routing dilakukan secara periodik. Protokol routing ini bebas dari kejadian looping route. Tetapi salah satu kelemahan DSDV adalah tidak mendukung multipath routing (routing ke banyak tujuan). Berikut akan dijelaskan beberapa dari protokol routing diatas.

Destination Sequenced Distance Vector (DSDV)

Prinsip kerja protokol routing ini mengacu kepada algoritma penentuan route Bellman-Ford berdasarkan nilai pembobotan setiap link. Setiap node menjaga tabel routingnya yang berisi arah tujuan, jumlah hop setiap tujuan dan sequence number. Proses update routing dilakukan secara periodik. Protokol routing ini bebas dari kejadian looping route. Tetapi salah satu kelemahan DSDV adalah tidak mendukung multipath routing (routing ke banyak tujuan)

Source Tree Adaptive Routing (STAR)

Protokol routing ini tidak membutuhkan update routing secara periodik.

 

Signal Stability Routing (SSR)

SSR memilih route berdasarkan kuat sinyal antar node dan terbagi atas dua protokol, Dynamic Routing Protocol (DRP) dan Static Routing Protocol (SRP). DRP bertanggung jawab untuk menjaga tabel stabilitas sinyal dan tabel routing. SRP memproses paket dengan melewatkan paket ke link dengan intensitas sinyal yang lebih besar.

Dynamic Source Routing (DSR)

Protokol routing ini bekerja berdasarkan routing dari node sebelumnya. Node akan meng-update route berdasarkan route baru yang didapatnya. Proses routing terdiri atas dua bagian, route discovery dan route maintenance. Route discovery digunakan untuk meminta dan meneruskan informasi route. Route maintenance digunakan untuk informasi kejadian kesalahan route dan acknowledgements. Sama halnya dengan AODV, protokol ini akan membebani link. Semakin besar jaringan, control packets dan message packets akan semakin banyak, yang akan berakibat meminta alokasi bandwith.

 

Temporary Ordered Routing Algorithm (TORA)

Protokol routing ini bersifat adaptif dan bebas dari kemungkinan looping sehingga sangat cocok untuk kondisi jaringan yang berubah-ubah. Node pengirim menyediakan beberapa route untuk ke node tujuan, sehingga jika satu route gagal dapat digunakan route lain. Dengan adanya banyak route dari node pengirim, maka pengiriman paket data dapat tidak terganggu saat pertama kali terjadinya perubahan jaringan. Terjadi 3 proses didalam protokol ini, yaitu route creation, route maintenance dan route erasure.

Ad Hoc on Demand Distance Vector Routing (AODV)

Protokol routing ini mengacu kepada protokol routing DSDV dengan penambahan fungsi broadcast untuk meminta route. Protokol ini mampu menangani perubahan topologi dan bebas dari looping route. Ketika suatu route dibutuhkan oleh suatu node, maka node tersebut akan mem-broadcast pesan ”route request” ke semua link. Respon dari pesan tersebut kemudian dikirim balik oleh node penerima atau intermediate node yang berisi route baru untuk ke node tujuan.

 

Relative Distance Microdiversity Routing (RDMAR)

Protokol routing ini memperkirakan jarak, radio loop antar node menggunakan algoritma estimasi jarak Zone Routing Protocol (ZRP) Protokol routing ini berbasis zone atau clustering. Protokol routing ini menerapkan metode clustering seperti pada CSGR, tetapi setiap nodenya bersifat sebagai node pemimpin dan juga anggota dari cluster lainnya. Sementara pada CSGR setiap cluster hanya mempunyai satu node pemimpin.


Cara Setting Jaringan Ad Hoc

 

Cara mensetting laptop utama

  • Klik Start> Control Panel> Network Connections.

  • Klik kanan pada wireless network connection, lalu klik Properties

  • Pada Wireless Network Connection Properties, klik tab Wireless Networks

  • Klik Add pada bagian Preferred networks

  • Selanjutnya isilah Network Name (SSID) untuk jaringan yang akan dibuat

  • Jangan lupa untuk mencentang check box This is a computer-to-computer (ad hoc)network: wireless access point are not used

  • User juga dapat membubuhkan WEP Password agar koneksi anda aman.

  • Klik OK dan OK lagi untuk menyimpan konfigurasi.

 

Cara mensetting laptop lainnya

Windows XP otomatis akan mendeteksi jika ada Wireless Network yang aktif

Klik kanan pada icon Wireless Network yang berada pada taskbar, lalu klik View Available Wireless Networks.

Wireless Network Connection akan menampilkan list SSID wireless. Klik SSID wireless, lalu klik Connect.

Jika pada laptop utama ditambahkan WEP Password pada laptop utama, maka windows XP akan meminta user untuk mengisi password sebelum terkoneksi ke jaringan Ad Hoc.

Menghitung CLock RAM

Dalam menghitung waktu transfer data suatu RAM adalah menggunakan satuan Nanosecond ( ns ), atau disebut juga dengan waktu yang dibutuhkan oleh RAM untuk mengirimkan 1 bit data ke processor.

1. Sebagai contoh adalah kita akan menghitung waktu transfer dari RAM DDR3 dimana pada contoh ini kita menggunakan RAM DDR 3 PC 12800 artinya memiliki bus sebesar 1600 Mhz.

2. Selanjutnya kita akan mengkonversikan dulu satuan Hertz. Dimana 1 Mhz = 1.000.000 Hertz, artinya RAM DDR3 dengan bus sebesar 1600 Mhz = 1.600.000.000 Hertz. Jadi dapat kita simpulkan sebagai 1600 Mhz = 1 / 1.600.000.000 second.

3. Berikutnya adalah dengan mengkonversikan satuan detik menjadi nanosecond ( ns ). 1 detik sama dengan 1.000.000.000 ns ( nanosecond). Perlu kita ingat lagi bahwa 1 detik sama dengan 1 miliar nanodetik.

4. Kemudian kita kalikan bilangan : 1/1.600.000.000 x 1.000.000.000 = 0.625 ns. Jadi RAM DDR3 PC 12800 memiliki waktu tranfer data sebanyak = 0.625 nanosecond

Selanjutnya adalah kita akan menghitung tranfer rate RAM DDR3. Memory DDR3 memiliki kecepatan transfer 2 kali lipat dari RAM DDR2. Transfer rate merupakan kapasitas data yang dapat dikirimkan sebuah RAM ke processor dalam satuan Megabytes/secon (MB/s).


Sebagai contoh :

RAM DDR3

1. Sebuah RAM DDR3 PC 12800 yang memiliki memory clock ratenya sebesar 200 Mhz.

2. Untuk memory DDR3 kita akan menggunakan Rumus berikut = transfer rate (memori clock rate) × 4 (bus clock multiplier) × 2 (untuk data rate) × 64 (jumlah bit yang ditransfer) / 8 (jumlah bit / byte).

3. Kemudian tinggal kita masukkan angka perhitungnya menjadi = ( 200 x 4 x 2 x 64 ) / 8.

4. Maka hasilnya akan sama dengan 12.800, artinya sebuah RAM DDR3 dengan memory clock 200 Mhz memberikan transfer rate maksimum 12800 MB/s.

5. Dengan adanya teknologi  Dual Channel saat ini maka transfer rate 12.800 MB/s akan dikalikan dua, dan menghasilkan 25.600 MB/s


RAM DDR2

1. Sebuah RAM DDR2 PC 6400 yang memiliki clock ratenya sebesar 800 Mhz.

2. Lebar data (width) sebuah RAM adalah 64-bit, atau dikonversikan kedalam satuan byte sama dengan 8 byte. Yaitu 1 byte = 8 bit.

3. Transfer Rate = Bus (MHz) x Lebar Data (Byte).

4. Transfer Rate = 800 MHz x 8 Byte = 6400 MB/s. artinya sebuah RAM DDR2 dengan memory clock 800 Mhz memberikan transfer rate maksimum 6400 MB/s.

5. Dengan adanya teknologi  Dual Channel saat ini maka transfer rate 6.400 MB/s akan dikalikan dua, dan menghasilkan 12.800  MB/s

Melalui contoh diatas dapat kita simpulkan bahwa RAM DDR3 memang memiliki kecepatan transfer data  2x lebih cepat dari RAM DDR2.

 


Kelebihan RAM DDR3

1. Bandwidth lebih tinggi (sampai dengan 1600 MHz)

2. Peningkatan performa pada daya yang lebih kecil.

3. Pada laptop, baterai akan lebih tahan lama.

4. Operasional memritambahan untuk meningkatkan kinerja, efisiensi dan margin timing

5. Memungkinkan beberapa kepadatan tinggi, rendah tegangan modul pilihan untuk server, desktop, notebook dan aplikasi.


Kekurangan RAM DDR3

1. Modul memori DDR3 tidak kompatibel ke belakang untuk motherboard berbasis DDR2

2. Harga yg mahal dibandingkan RAM DDR2

Sejarah Perkembangan RAM

1. RAM


RAM yang merupakan singkatan dari Random Access Memory ditemukan oleh Robert Dennard dan diproduksi secara besar – besaran oleh Intel pada tahun 1968, jauh sebelum PC ditemukan oleh IBM pada tahun 1981. Dari sini lah perkembangan RAM bermula. Pada awal diciptakannya, RAM membutuhkan tegangan 5.0 volt untuk dapat berjalan pada frekuensi 4,77MHz, dengan waktu akses memori (access time) sekitar 200ns (1ns = 10-9 detik).


2. DRAM


Pada tahun 1970, IBM menciptakan sebuah memori yang dinamakan DRAM. DRAM sendiri merupakan singkatan dari Dynamic Random Access Memory. Dinamakan Dynamic karena jenis memori ini pada setiap interval waktu tertentu, selalu memperbarui keabsahan informasi atau isinya. DRAM mempunyai frekuensi kerja yang bervariasi, yaitu antara 4,77MHz hingga 40MHz.


3. FP RAM


Fast Page Mode DRAM atau disingkat dengan FPM DRAM ditemukan sekitar tahun 1987. Sejak pertama kali diluncurkan, memori jenis ini langsung mendominasi pemasaran memori, dan orang sering kali menyebut memori jenis ini “DRAM” saja, tanpa menyebut nama FPM. Memori jenis ini bekerja layaknya sebuah indeks atau daftar isi. Arti Page itu sendiri merupakan bagian dari memori yang terdapat pada sebuah row address. Ketika sistem membutuhkan isi suatu alamat memori, FPM tinggal mengambil informasi mengenainya berdasarkan indeks yang telah dimiliki. FPM memungkinkan transfer data yang lebih cepat pada baris (row) yang sama dari jenis memori sebelumnya. FPM bekerja pada rentang frekuensi 16MHz hingga 66MHz dengan access time sekitar 50ns. Selain itu FPM mampu mengolah transfer data (bandwidth) sebesar 188,71 Mega Bytes (MB) per detiknya. Memori FPM ini mulai banyak digunakan pada sistem berbasis Intel 286, 386 serta sedikit 486.


4. EDO RAM


Pada tahun 1995, diciptakanlah memori jenis Extended Data Output Dynamic Random Access Memory (EDO DRAM) yang merupakan penyempurnaan dari FPM. Memori EDO dapat mempersingkat read cycle-nya sehingga dapat meningkatkan kinerjanya sekitar 20 persen. EDO mempunyai access time yang cukup bervariasi, yaitu sekitar 70ns hingga 50ns dan bekerja pada frekuensi 33MHz hingga 75MHz. Walaupun EDO merupakan penyempurnaan dari FPM, namun keduanya tidak dapat dipasang secara bersamaan, karena adanya perbedaan kemampuan. Memori EDO DRAM banyak digunakan pada sistem berbasis Intel 486 dan kompatibelnya serta Pentium generasi awal.


5. SDRAM PC66


Pada peralihan tahun 1996 – 1997, Kingston menciptakan sebuah modul memori dimana dapat bekerja pada kecepatan (frekuensi) bus yang sama / sinkron dengan frekuensi yang bekerja pada prosessor. Itulah sebabnya mengapa Kingston menamakan memori jenis ini sebagai Synchronous Dynamic Random Access Memory (SDRAM). SDRAM ini kemudian lebih dikenal sebagai PC66 karena bekerja pada frekuensi bus 66MHz. Berbeda dengan jenis memori sebelumnya yang membutuhkan tegangan kerja yang lumayan tinggi, SDRAM hanya membutuhkan tegangan sebesar 3,3 volt dan mempunyai access time sebesar 10ns.


Dengan kemampuannya yang terbaik saat itu dan telah diproduksi secara masal, bukan hanya oleh Kingston saja, maka dengan cepat memori PC66 ini menjadi standar memori saat itu. Sistem berbasis prosessor Soket 7 seperti Intel Pentium klasik (P75 – P266MMX) maupun kompatibelnya dari AMD, WinChip, IDT, dan sebagainya dapat bekerja sangat cepat dengan menggunakan memori PC66 ini. Bahkan Intel Celeron II generasi awal pun masih menggunakan sistem memori SDRAM PC66.


6. SDRAM PC100


Selang kurun waktu setahun setelah PC66 diproduksi dan digunakan secara masal, Intel membuat standar baru jenis memori yang merupakan pengembangan dari memori PC66. Standar baru ini diciptakan oleh Intel untuk mengimbangi sistem chipset i440BX dengan sistem Slot 1 yang juga diciptakan Intel. Chipset ini didesain untuk dapat bekerja pada frekuensi bus sebesar 100MHz. Chipset ini sekaligus dikembangkan oleh Intel untuk dipasangkan dengan prosessor terbaru Intel Pentium II yang bekerja pada bus 100MHz. Karena bus sistem bekerja pada frekuensi 100MHz sementara Intel tetap menginginkan untuk menggunakan sistem memori SDRAM, maka dikembangkanlah memori SDRAM yang dapat bekerja pada frekuensi bus 100MHz. Seperti pendahulunya PC66, memori SDRAM ini kemudian dikenal dengan sebutan PC100.

Dengan menggunakan tegangan kerja sebesar 3,3 volt, memori PC100 mempunyai access time sebesar 8ns, lebih singkat dari PC66. Selain itu memori PC100 mampu mengalirkan data sebesar 800MB per detiknya.
Hampir sama dengan pendahulunya, memori PC100 telah membawa perubahan dalam sistem komputer. Tidak hanya prosessor berbasis Slot 1 saja yang menggunakan memori PC100, sistem berbasis Soket 7 pun diperbarui untuk dapat menggunakan memori PC100. Maka muncullah apa yang disebut dengan sistem Super Soket 7. Contoh prosessor yang menggunakan soket Super7 adalah AMD K6-2, Intel Pentium II generasi akhir, dan Intel Pentium II generasi awal dan Intel Celeron II generasi awal.


7. DR DRAM


Pada tahun 1999, Rambus menciptakan sebuah sistem memori dengan arsitektur baru dan revolusioner, berbeda sama sekali dengan arsitektur memori SDRAM.Oleh Rambus, memori ini dinamakan Direct Rambus Dynamic Random Access Memory. Dengan hanya menggunakan tegangan sebesar 2,5 volt, RDRAM yang bekerja pada sistem bus 800MHz melalui sistem bus yang disebut dengan Direct Rambus Channel, mampu mengalirkan data sebesar 1,6GB per detiknya! (1GB = 1000MHz). Sayangnya kecanggihan DRDRAM tidak dapat dimanfaatkan oleh sistem chipset dan prosessor pada kala itu sehingga memori ini kurang mendapat dukungan dari berbagai pihak. Satu lagi yang membuat memori ini kurang diminati adalah karena harganya yang sangat mahal.


8. RDRAM PC800


Masih dalam tahun yang sama, Rambus juga mengembangkan sebuah jenis memori lainnya dengan kemampuan yang sama dengan DRDRAM. Perbedaannya hanya terletak pada tegangan kerja yang dibutuhkan. Jika DRDRAM membutuhkan tegangan sebesar 2,5 volt, maka RDRAM PC800 bekerja pada tegangan 3,3 volt. Nasib memori RDRAM ini hampir sama dengan DRDRAM, kurang diminati, jika tidak dimanfaatkan oleh Intel.

Intel yang telah berhasil menciptakan sebuah prosessor berkecepatan sangat tinggi membutuhkan sebuah sistem memori yang mampu mengimbanginya dan bekerja sama dengan baik. Memori jenis SDRAM sudah tidak sepadan lagi. Intel membutuhkan yang lebih dari itu. Dengan dipasangkannya Intel Pentium4, nama RDRAM melambung tinggi, dan semakin lama harganya semakin turun.


9. SDRAM PC133


Selain dikembangkannya memori RDRAM PC800 pada tahun 1999, memori SDRAM belumlah ditinggalkan begitu saja, bahkan oleh Viking, malah semakin ditingkatkan kemampuannya. Sesuai dengan namanya, memori SDRAM PC133 ini bekerja pada bus berfrekuensi 133MHz dengan access time sebesar 7,5ns dan mampu mengalirkan data sebesar 1,06GB per detiknya. Walaupun PC133 dikembangkan untuk bekerja pada frekuensi bus 133MHz, namun memori ini juga mampu berjalan pada frekuensi bus 100MHz walaupun tidak sebaik kemampuan yang dimiliki oleh PC100 pada frekuensi tersebut.


10. SDRAM PC150


Perkembangan memori SDRAM semakin menjadi – jadi setelah Mushkin, pada tahun 2000 berhasil mengembangkan chip memori yang mampu bekerja pada frekuensi bus 150MHz, walaupun sebenarnya belum ada standar resmi mengenai frekunsi bus sistem atau chipset sebesar ini. Masih dengan tegangan kerja sebesar 3,3 volt, memori PC150 mempunyai access time sebesar 7ns dan mampu mengalirkan data sebesar 1,28GB per detiknya.

Memori ini sengaja diciptakan untuk keperluan overclocker, namun pengguna aplikasi game dan grafis 3 dimensi, desktop publishing, serta komputer server dapat mengambil keuntungan dengan adanya memori PC150.


11. DDR SDRAM


Masih di tahun 2000, Crucial berhasil mengembangkan kemampuan memori SDRAM menjadi dua kali lipat. Jika pada SDRAM biasa hanya mampu menjalankan instruksi sekali setiap satu clock cycle frekuensi bus, maka DDR SDRAM mampu menjalankan dua instruksi dalam waktu yang sama. Teknik yang digunakan adalah dengan menggunakan secara penuh satu gelombang frekuensi. Jika pada SDRAM biasa hanya melakukan instruksi pada gelombang positif saja, maka DDR SDRAM menjalankan instruksi baik pada gelombang positif maupun gelombang negatif. Oleh karena dari itu memori ini dinamakan DDR SDRAM yang merupakan kependekan dari Double Data Rate Synchronous Dynamic Random Access Memory.

Dengan memori DDR SDRAM, sistem bus dengan frekuensi sebesar 100 – 133 MHz akan bekerja secara efektif pada frekuensi 200 – 266 MHz. DDR SDRAM pertama kali digunakan pada kartu grafis AGP berkecepatan ultra. Sedangkan penggunaan pada prosessor, AMD ThunderBird lah yang pertama kali memanfaatkannya.


12. DDR RAM


Pada 1999 dua perusahaan besar microprocessor INTEL dan AMD bersaing ketat dalam meningkatkan kecepatan clock pada CPU. Namun menemui hambatan, karena ketika meningkatkan memory bus ke 133 Mhz kebutuhan Memory (RAM) akan lebih besar. Dan untuk menyelesaikan masalah ini maka dibuatlah DDR RAM (double data rate transfer) yang awalnya dipakai pada kartu grafis, karena sekarang anda bisa menggunakan hanya 32 MB untuk mendapatkan kemampuan 64 MB. AMD adalah perusahaan pertama yang menggunakan DDR RAM pada motherboardnya.


13. DDR2 RAM


Ketika memori jenis DDR (Double Data Rate) dirasakan mulai melambat dengan semakin cepatnya kinerja prosesor dan prosesor grafik, kehadiran memori DDR2 merupakan kemajuan logis dalam teknologi memori mengacu pada penambahan kecepatan serta antisipasi semakin lebarnya jalur akses segitiga prosesor, memori, dan antarmuka grafik (graphic card) yang hadir dengan kecepatan komputasi yang berlipat ganda.

Perbedaan pokok antara DDR dan DDR2 adalah pada kecepatan data serta peningkatan latency mencapai dua kali lipat. Perubahan ini memang dimaksudkan untuk menghasilkan kecepatan secara maksimum dalam sebuah lingkungan komputasi yang semakin cepat, baik di sisi prosesor maupun grafik.

Selain itu, kebutuhan voltase DDR2 juga menurun. Kalau pada DDR kebutuhan voltase tercatat 2,5 Volt, pada DDR2 kebutuhan ini hanya mencapai 1,8 Volt. Artinya, kemajuan teknologi pada DDR2 ini membutuhkan tenaga listrik yang lebih sedikit untuk menulis dan membaca pada memori.

Teknologi DDR2 sendiri lebih dulu digunakan pada beberapa perangkat antarmuka grafik, dan baru pada akhirnya diperkenalkan penggunaannya pada teknologi RAM. Dan teknologi DDR2 ini tidak kompatibel dengan memori DDR sehingga penggunaannya pun hanya bisa dilakukan pada komputer yang memang mendukung DDR2.


14. DDR3 RAM


RAM DDR3 ini memiliki kebutuhan daya yang berkurang sekitar 16% dibandingkan dengan DDR2. Hal tersebut disebabkan karena DDR3 sudah menggunakan teknologi 90 nm sehingga konsusmsi daya yang diperlukan hanya 1.5v, lebih sedikit jika dibandingkan dengan DDR2 1.8v dan DDR 2.5v. Secara teori, kecepatan yang dimiliki oleh RAM ini memang cukup memukau. Ia mampu mentransfer data dengan clock efektif sebesar 800-1600 MHz. Pada clock 400-800 MHz, jauh lebih tinggi dibandingkan DDR2 sebesar 400-1066 MHz (200- 533 MHz) dan DDR sebesar 200-600 MHz (100-300 MHz). Prototipe dari DDR3 yang memiliki 240 pin. Ini sebenarnya sudah diperkenalkan sejak lama pada awal tahun 2005. Namun, produknya sendiri benar-benar muncul pada pertengahan tahun 2007 bersamaan dengan motherboard yang menggunakan chipset Intel P35 Bearlake dan pada motherboard tersebut sudah mendukung slot DIMM.


Istilah-istilah pada RAM


1. Speed

Speed atau kecepatan, makin menjadi faktor penting dalam pemilihan sebuah modul memory. Bertambah cepatnya CPU, ditambah dengan pengembangan digunakannya dual-core, membuat RAM harus memiliki kemampuan yang lebih cepat untuk dapat melayani CPU.


2. Megahertz

Penggunaan istilah ini, dimulai pada jaman kejayaan SDRAM. Kecepatan memory, mulai dinyatakan dalam megahertz (MHz). Dan masih tetap digunakan, bahkan sampai pada DDR2.

Perhitungan berdasarkan selang waktu (periode) yang dibutuhkan antara setiap clock cycle. Biasanya dalam orde waktu nanosecond. Seperti contoh pada memory dengan aktual clock speed 133 MHz, akan membutuhkan access time 8ns untuk 1 clock cycle.

Kemudian keberadaan SDRAM tergeser dengan DDR (Double Data Rate). Dengan pengembangan utama pada kemampuan mengirimkan data dua kali lebih banyak. DDR mengirimkan data dua kali dalam satu clock cycle.

Kebanyakan produk mulai menggunakan clock speed efektif, hasil perkalian dua kali data yang dikirim. Ini sebetulnya lebih tepat jika disebut sebagai DDR Rating.

Hal yang sama juga terjadi untuk DDR2. Merupakan hasil pengembangan dari DDR. Dengan kelebihan utama pada rendahnya tegangan catudaya yang mengurangi panas saat beroperasi. Juga kapasitas memory chip DDR2 yang meningkat drastis, memungkinkan sebuah keping DDR2 memiliki kapasitas hingga 2 GB. DDR2 juga mengalami peningkatan kecepatan dibanding DDR.


3. PC Rating

Pada modul DDR, sering ditemukan istilah misalnya PC3200. Untuk modul DDR2, PC2-3200. Dari mana angka ini muncul?

Biasa dikenal dengan PC Rating untuk modul DDR dan DDR2. Sebagai contoh kali ini adalah sebuah modul DDR dengan clock speed 200 MHz. Atau untuk DDR Rating disebut DDR400. Dengan bus width 64-bit, maka data yang mampu ditransfer adalah 25.600 megabit per second (=400 MHz x 64-bit). Dengan 1 byte = 8-bit, maka dibulatkan menjadi 3.200MBps (Mebabyte per second). Angka throughput inilah yang dijadikan nilai dari PC Rating. Tambahan angka “2″, baik pada PC Rating maupu DDR Rating, hanya untuk membedakan antara DDR dan DDR2.


4. CAS Latency

Akronim CAS berasal dari singkatan column addres strobe atau column address select. Arti keduanya sama, yaitu lokasi spesifik dari sebuah data array pada modul DRAM.

CAS Latency, atau juga sering disingkat dengan CL, adalah jumlah waktu yang dibutuhkan (dalam satuan clock cycle) selama delay waktu antara data request dikirimkan ke memory controller untuk proses read, sampai memory modul berhasil mengeluarkan data output. Semakin rendah spesifikasi CL yang dimiliki sebuah modul RAM, dengan clock speed yang sama, akan menghasilkan akses memory yang lebih cepat.


Bagian-Bagian RAM


1. PCB (Printed Circuit Board)

Pada umumnya, papan PCB berwana hijau. Pada PCB inilah beberapa komponen chip memory terpasang.

PCB ini sendiri tersusun dari beberapa lapisan (layer). Pada setiap lapisan terpasang jalur ataupun sirkuit, untuk mengalirkan listrik dan data. Secara teori, semakin banyak jumlah layer yang digunakan pada PCB memory, akan semakin luas penampang yang tersedia dalam merancang jalur. Ini memungkinkan jarak antar jalur dan lebar jalur dapat diatur dengan lebih leluasa, dan menghindari noise interferensi antarjalur pada PCB. Dan secara keseluruhan akan membuat modul memory tersebut lebih stabil dan cepat kinerjanya. Itulah sebabnya pada beberapa iklan untuk produk memory, menekankan jumlah layer pada PCB yang digunakan modul memory produk yang bersangkutan.


2. Contact Point

Sering juga disebut contact finger, edge connector, atau lead. Saat modul memory dimasukkan ke dalam slot memory pada motherboard, bagian inilah yang menghubungkan informasi antara motherboard dari dan ke modul memory. Konektor ini biasa terbuat dari tembaga ataupun emas. Emas memiliki nilai konduktivitas yang lebih baik. Namun konsekuensinya, dengan harga yang lebih mahal. Sebaiknya pilihan modul memory disesuaikan dengan bahan konektor yang digunakan pada slot memory motherboard. Dua logam yang berbeda, ditambah dengan aliran listrik saat PC bekerja lebih memungkinkan terjadinya reaksi korosif.

Pada contact point, yang terdiri dari ratusan titik, dipisahkan dengan lekukan khusus. Biasa disebut sebagai notch. Fungsi utamanya, untuk mencegah kesalahan pemasangan jenis modul memory pada slot DIMM yang tersedia di motherboard. Sebagai contoh, modul DDR memiliki notch berjarak 73 mm dari salah satu ujung PCB (bagian depan). Sedangkan DDR2 memiliki notch pada jarak 71 mm dari ujung PCB. Untuk SDRAM, lebih gampang dibedakan, dengan adanya 2 notch pada contact point-nya.


3. DRAM (Dynamic Random Access Memory)

Komponen-komponen berbentuk kotak-kotak hitam yang terpasang pada PCB modul memory inilah yang disebut DRAM. Disebut dynamic, karena hanya menampung data dalam periode waktu yang singkat dan harus di-refresh secara periodik. Sedangkan jenis dan bentuk dari DRAM atau memory chip ini sendiri cukup beragam.


4. Chip Packaging

Atau dalam bahasa Indonesia adalah kemasan chip. Merupakan lapisan luar pembentuk fisik dari masing-masing memory chip. Paling sering digunakan, khususnya pada modul memory DDR adalah TSOP (Thin Small Outline Package). Pada RDRAM dan DDR2 menggunakan CSP (Chip Scale Package). Beberapa chip untuk modul memory terdahulu menggunakan DIP (Dual In-Line Package) dan SOJ (Small Outline J-lead).


5. DIP (Dual In-Line Package)

Chip memory jenis ini digunakan saat memory terinstal langsung pada PCB motherboard. DIP termasuk dalam kategori komponen through-hole, yang dapat terpasang pada PCB melalui lubang-lubang yang tersedia untuk kaki/pinnya. Jenis chip DRAM ini dapat terpasang dengan disolder ataupun dengan socket. SOJ (Small Outline J-Lead) Chip DRAM jenis SOJ, disebut demikan karena bentuk pin yang dimilikinya berbentuk seperti huruh “J”. SOJ termasuk dalam komponen surfacemount, artinya komponen ini dipasang pada sisi pemukaan pada PCB.


6. TSOP (Thin Small Outline Package)

Termasuk dalam komponen surfacemount. Namanya sesuai dengan bentuk dan ukuran fisiknya yang lebih tipis dan kecil dibanding bentuk SOJ.


7. CSP (Chip Scale Package)

Jika pada DIP, SOJ dan TSOP menggunakan kaki/pin untuk menghubungkannya dengan board, CSP tidak lagi menggunakan PIN. Koneksinya menggunakan BGA (Ball Grid Array) yang terdapat pada bagian bawah komponen. Komponen chip DRAM ini mulai digunakan pada RDRAM (Rambus DRAM) dan DDR.

Follow

Get every new post delivered to your Inbox.